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Introduction

There is a rich literature on Bayesian sparse modeling.
Applications include variable selection in regression with p ≫ n, piece-wise constant
smoothing where most of contrasts between parameters are zero, etc.
We focus on the MCMC sampling algorithm for variable selection problems, under
augmented likelihood with θ in a Gaussian density

L(y ; θ, z) ∝ exp(−1

2
θ′Mzθ + θ′mz).

We focus on exactly sparse models, with θj = 0 happens with > 0 probability (in both
prior and posterior).
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Commonly Used Exactly Sparse Priors

Discrete spike-and-slab priors (Mitchell and Beauchamp (1988)):

Π0(θ) =

p∏
j=1

[
w δ0(θj)︸ ︷︷ ︸

spike

+(1− w) f (θj)︸ ︷︷ ︸
slab

]

l1-ball priors (Xu and Duan 2023):

β ∼ Πβ0 , θ = argminz:∥z∥1≤r∥z − β∥22

or, with reparameterization:

β ∼ Πβ0 , θ = sign(β) ◦ (|β| − κ)+
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Existing Algorithms for Discrete Spike-and-Slab

For a Gaussian linear regression using spike-and-slab priors, very efficient algorithms have
been developed — since one can marginalize most of the parameters, leading to collapsed
Gibbs sampler:

Orthogonal Data Augmentation (ODA) (Ghosh and Clyde (2011))
Stochastic Search Variable Selection (SSVS) (George and McCulloch (1995))

For design matrix that is high-dimensional or contains highly correlated predictors:

Shotgun algorithm (Hans et al. (2007))
Parallel tempering (Bottolo and Richardson (2010))
Correlation-based search (Kwon et al. (2011))
Two-parameter flipping Metropolis-Hastings algorithm under g -prior slab (Yang et al. (2016))
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l1-Ball Priors

The spike-and-slab priors assume the independence for different entries of θ a priori:

Π0(θ) =
∏p

j=1

[
wδ0(θj) + (1− w)f (θj)

]
Recent interest in “structured sparsity” in the sense that:

1 The occurrences of zeros (or close-to-zero) are dependent, according to a temporal, spatial,
or group structure

2 The non-zeros could also be correlated

l1-ball priors are quite convenient for addressing such modeling needs:

β ∼ Πβ0 , θ = sign(β) ◦ (|β| − κ)+

One could allow β to have some dependence structure, such as from a Gaussian process
(Kang et al. (2018))

One could let κ to be a vector with values following a pre-defined group structure (Yuan
and Lin (2006); Bai et al. (2022))
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The soft-thresholding transform has two useful properties: continuity and smoothness
almost everywhere (w.r.t. Πβ0 ).

It allows for the gradient-based hybrid Monte Carlo algorithms such as No-U-Turn
Hamiltonian Monte Carlo.

HMC has caveats of being sensitive to tuning and may have a high computational cost
due to the gradient evaluation.

A simpler alternative, the Gibbs sampler, is tuning-free and hence quite friendly to general
users.
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Problem Setting

Let θ ∈ Rp be the parameter of interest. We focus on the model with conditional posterior
taking the following form

Π(θ, β | M, ϕ,H, ψ) ∝ exp{−1

2
(θ′Mθ − 2ϕ′θ)} exp{−1

2
(β′Hβ − 2ψ′β)},

θ = sign(β) ◦ (|β| − κ)+.
(1)

Two examples:

Variable selection in a linear regression model: y = Xθ + ϵ, ϵ ∼ N (0,Ω−1),

βj
indep∼ N (0, τj) → M = X ′ΩX , ϕ = X ′Ωy , H = diag(1/τj) and ψ = 0.

Sparse smoothing model: y = θ + ϵ, with yi associated with some spatial coordinate si ,
ϵ ∼ N (0, σ2I ), and β ∼ N (0,K (s, s)) → M = σ−2I , ϕ = σ−2y , H = K−1(s, s) and
ψ = 0.
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Motivation

For any non-diagonal M or H, the quadratic terms θ′Mθ and β′Hβ make it difficult to
explore a significant change in the parameters.

The correlation within entries of θ or β (a posteriori) adds a computational burden to the
posterior sampling using a Gibbs sampler.

Q: Can we cancel out the quadratic terms θ′Mθ and β′Hβ, with some clever data
augmentation trick?
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Data Augmentation

Consider latent variables r , t ∈ Rp:

(r | θ,M) ∼ N
{
(dIp −M)θ, (dIp −M)

}
,

(t | β,H) ∼ N
{
(eIp − H)β, (eIp − H)

}
,

(2)

where d , e > 0 are two constants chosen to make dIp −M and eIp − H positive definite.

One can take d to be “slightly” greater than the largest eigenvalue of M, say
λp(M) + 10−4.

We refer to (2) as the “anti-correlation Gaussian” in that they cancel out the correlation
between different entries of θ/β (We will see this soon).
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Data Augmentation

Combining the posterior (1) of (θ, β) and the conditional distribution (2) of (r , t), we have the
distribution of (θ, β) given (r , t):

Π(θ, β|r , t,M,H, ϕ, ψ)

∝Π(θ, β|M,H, ϕ, ψ)Π(r , t|θ, β,M,H, ϕ, ψ)

∝ exp{−1

2
(θ′Mθ − 2ϕ′θ)} exp{−1

2
(β′Hβ − 2ψ′β)}︸ ︷︷ ︸

Π(θ,β|M,H,ϕ,ψ)

· exp{−1

2
(θ′(dIp −M)θ − 2r ′θ + β′(eIp − H)β − 2t ′β)}︸ ︷︷ ︸

Π(r ,t|θ,β,M,H,ϕ,ψ)
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Data Augmentation

Π(θ, β|r , t,M,H, ϕ, ψ)

∝Π(θ, β|M,H, ϕ, ψ)Π(r , t|θ, β,M,H, ϕ, ψ)

∝ exp{−1

2
(���θ′Mθ − 2ϕ′θ)} exp{−1

2
(���β′Hβ − 2ψ′β)}︸ ︷︷ ︸

Π(θ,β|M,H,ϕ,ψ)

· exp{−1

2
(θ′(dIp −��M)θ − 2r ′θ + β′(eIp −��H)β − 2t ′β)}︸ ︷︷ ︸

Π(r ,t|θ,β,M,H,ϕ,ψ)

=

p∏
j=1

exp

{
−1

2

[
dθ2j − 2(ϕj + rj)θj + eβ2j − 2(ψj + tj)βj

]}
,

θj = sign(βj)(|βj | − κj)+.

(θj , βj)’s are now conditionally independent!
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Π(θ, β|r , t) ∝
p∏

j=1

exp

{
−1

2

[
dθ2j − 2(ϕj + rj)θj + eβ2j − 2(ψj + tj)βj

]}
,

θj = sign(βj)(|βj | − κj)+.

The conditional independence over j allows us to draw βj ’s in a block.

βj follows a three-component mixture and can be drawn in two steps:
1 Draw a discrete variable bj = sign(θj) ∈ {−1, 0, 1}
2 Draw βj according to bj :

(βj | bj = 0) ∼ N(−κj ,κj )(
ψj + tj

e
,
1

e
),

(βj | bj = 1) ∼ N(κj ,∞)(
ϕj + rj + ψj + tj + dκj

d + e
,

1

d + e
),

(βj | bj = −1) ∼ N(−∞,−κj )(
ϕj + rj + ψj + tj − dκj

d + e
,

1

d + e
).

(3)
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Numerical Experiments

1 l1-ball Variable selection:

yi ∼ N (x ′i θ, σ
2), i = 1, · · · , n,

σ2 ∼ InvGamma(aσ, bσ),

θj = sign(βj)(|βj | − κj)+, j = 1, · · · , p,

βj
indep∼ N (0, τj),

τj ∼ InvGamma(aj , bj),

κj ∼ Exp(λj).

The ground truth: the first d0 = 10 entries of θ are from N (5, 0.5), and the rest is set to
be zero.

One can also assume a common threshold κ ∼ Exp(λ).
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Results

Figure: θ and its posterior estimation ˆE[θ|y ]
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Results

Figure: Effective sample size per computing time
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Numerical Experiments

2 Sparse smoothing model: y = θ + ϵ, where ϵ ∼ No(0, Iσ2) and θ has spatially correlated
entries θi , each of which corresponds to a spatial coordinate si . We have spatially
correlated Gaussian precursor β from No{0,K (s, s)} with K Gaussian kernel and θ is
obtained by thresholding β with a communal threshold κ0.
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Results

Figure: Sparse smoothing
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Geometric Ergodicity

Although there has been a great number of algorithms designed for the spike-and-slab
priors that enjoy both high efficiency and fast mixing in numerical experiments, the
convergence properties of the Markov chain have not yet been discussed enough.

For simplicity, the remaining discussion assumes (M, ϕ,H, ψ, κ) are known and remain
unchanged.
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Why Geometric Ergodicity?

Let ΦBGS = {(θm, βm, rm, tm)}∞m=0 denote the Markov chain generated by our Blocked Gibbs
sampler. It has an invariant distribution w(θ, β, r , t).

Suppose we want to estimate Ewg(θ, β, r , t) for some real-valued measurable function g .

A strongly consistent estimator is ḡm = 1
m+1

∑m
k=0 g(θk , βk , rk , tk) for a Harris ergodic

Markov chain.

Establishing the geometric ergodicity leads to a Markov chain Central Limit Theorem
(CLT): √

m(ḡm − EΠ∞g) → N (0, σ2g ).

To get a consistent estimator of the standard error for ḡm, we require such CLT to hold.
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Geometric Ergodicity

One way to establish the geometric ergodicity is through proving a drift condition and a
minorization condition for (r , t)-block (Theorem 12 in Rosenthal (1994); Meyn and Tweedie
(1994)):

1 (Drift condition): There exist some V : X → R≥0, λ < 1, and b <∞ such that:

E[V (rm+1, tm+1)|rm, tm] ≤ λV (rm, tm) + b.

2 (Minorization condition): There exist some ϵ > 0, some probability measure Q(·) on X ,
and d > 2b/(1− λ) such that for ∀(r0, t0) ∈ X with V (r0, t0) < d ,

Pr ,t((r0, t0), ·) ≥ ϵQ(·).
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Geometric Ergodicity

Theorem

The Markov chain ΦBGS is geometrically ergodic. That is, there exist a real-valued function
C (θ, β, r , t) and 0 < γ < 1 such that for all (θ0, β0, r0, t0) ∈ X × Y,

∥Pm
BGS((θ0, β0, r0, t0), ·)− w(·)∥TV ≤ C (θ0, β0, r0, t0)γ

m.

More details can be found in our pre-print.

We proved the geometric ergodicity for our Markov chain (the Gibbs sampler with
anti-correlation Gaussian data augmentation).

To the best of our knowledge, this is the first work on the proof of geometric ergodicity
for a Gibbs sampler with the spike-and-slab-type priors.
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Extension: Sampling From Truncated Multivariate Normal

Suppose we wish to sample from a truncated multivariate normal:

θ ∼ N (µ,Σ) subject to θj ∈ Rj ⊂ R, j = 1, · · · , p.

where Rj is some interval whose endpoints can be either −∞ or ∞.
We introduce a latent variable r :

r |θ ∼ N ((dI − Σ−1)θ, dI − Σ−1),

where d > 0 makes the matrix dI − Σ−1 positive definite. Conditioned on the latent variable,
the correlation between different entries of θ is canceled out, thus leading to

θj |rj
indep∼ NRj

(
rj + ϕj

d
,
1

d

)
,

where ϕ = Σ−1µ.
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Discussion

Our algorithm can be applied to many important scenarios spanning from variable
selection to sparse smoothing.

The novel data augmentation method, along with an efficient sampling algorithm of the
latent variables, speeds up the Gibbs sampling and reaches a high effective sample size
per second.

The geometric ergodicity proof serves as an important theoretical guarantee for the
convergence behavior of the Gibbs sampler under l1-ball priors and justifies the broad
usage of such modeling.

Code and paper will be available soon on Github and arXiv.
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