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Motivating Problem

In Bayesian sparse modeling, the spike-and-slab priors assume the independence for

different entries of θ a priori: Π0(θ) =
∏p
j=1

[
wδ0(θj)+ (1−w)f (θj)

]
. However, there is

recent interest in “structured" sparsity in the sense that the occurrences of both zeros
and non-zeros could be dependent. l1-ball priors[2] are quite convenient for addressing
such modeling needs: β ∼ Π

β
0 , θ = sign(β) ◦ (|β| − κ)+, where θ ∈ Rp is the param-

eter of interest, associated with precursor random variable β ∈ Rp. We focus on the
following posterior distribution:

Π(θ, β |M,ϕ,H, ψ, κ,Y) ∝ exp

[
− 1

2
(θ′Mθ − 2ϕ′θ + β′Hβ − 2ψ′β)

]
,

θ = sign(β) ◦ (|β| − κ)+,

For any non-diagonal M or H, the quadratic term θ′Mθ or β′Hβ in the exponent of
posterior makes it difficult to explore a large change in the parameter. This motivates
us to use some latent variables to cancel out those terms.

Anti-Correlation Gaussian Data Augmentation

Consider latent variables r, t ∈ Rp:

(r | θ,M) ∼ N
{
(dIp −M)θ, (dIp −M)

}
,

(t | β,H) ∼ N
{
(eIp −H)β, (eIp −H)

}
,

where d, e > 0 are two constants chosen to make dIp−M and eIp−H positive definite.
This leads to:

Π(θ, β|r, t,M,H, ϕ, ψ)

∝Π(θ, β|M,H, ϕ, ψ)Π(r, t|θ, β,M,H, ϕ, ψ)

∝ exp{−1

2
(������

θ′Mθ − 2ϕ′θ)} exp{−1

2
(
�
���

���

β′Hβ − 2ψ′β)}︸ ︷︷ ︸
Π(θ,β|M,H,ϕ,ψ)

· exp{−1

2
(θ′(dIp − �

�
�M)θ − 2r′θ + β′(eIp − �

��H)β − 2t′β)}︸ ︷︷ ︸
Π(r,t|θ,β,M,H,ϕ,ψ)

=

p∏
j=1

exp

{
−1

2

[
dθ2j − 2(ϕj + rj)θj + eβ2j − 2(ψj + tj)βj

]}
,

(θj, βj)’s are now conditionally independent! The conditional independence over j al-
lows us to draw βj ’s in a block.

Efficient Sampling of the Anti-Correlation
Gaussian in Regression

Sample r ∼ N [(dI −X ′ΩX)θ, (dI −X ′ΩX)] efficiently when Ω is complicated:
We pre-compute the singular value decomposition (SVD) of X = UXΛXV

′
X .

1. Sample γ1 ∼ N (0, dIn), γ2 ∼ N (0, dIp−n), γ3 ∼ N [ΛXγ1/d, bΩIn−(ΛX)2/d];

2. Sample η ∼ N (0,Ω−1 − bΩIn);

3. Set r = VXγ1 + V
†
Xγ2 −X ′Ω(UXγ3 + η) + (dI −X ′ΩX)θ.

Extension: Sampling from Truncated MVN

One of the extensions is on the sampling of truncated multivariate Gaussian:

Π(θ | µ,Σ, R) ∝ exp

[
−1

2
(θ − µ)TΣ−1(θ − µ)

]
1(θ ∈ R)

where µ ∈ Rp, Σ is positive definite, and R some constrained set of dimension p. Using the
anti-correlation Gaussian (r | θ, µ,Σ) ∼ N [(dI − Σ−1)(θ − µ), dI − Σ−1], we have

Π(θ | µ, r) ∝ 1(θ ∈ R)

p∏
j=1

exp[−1

2
d(θj − µj)

2 + (θj − µj)rj].

When the constraints in R are separable over each sub-dimension, then θj is conditionally inde-
pendent over j.

Geometric Ergodicity

Consider the following Markov transition kernel:

K(θm+1, βm+1, rm+1, tm+1 | rm, tm)
= ΠK(r

m+1 | θm+1)ΠK(t
m+1 | βm+1)ΠK(β

m+1, θm+1 | rm, tm).

Theorem 1. The Markov chain generated by K(θm+1, βm+1, rm+1, tm+1 | rm, tm) is geometrically
ergodic. Specifically, there exists a real-valued function C2(r

0, t0) and 0 < γ < 1 such that for all
(r0, t0),

∥Pm(β,r,t)[(r
0, t0), ·]− µ(β,r,t)(·)∥TV ≤ C2(r

0, t0)γm,

where ∥ · ∥TV denotes the total variation norm.

Simulation: Variable Selection

Linear regression with yi ∼ N(xTi θ, σ
2), xi ∈ Rp simulated from a multivariate Gaussian with

mean zero, and correlation ρ|j−j
′| between xi,j and xi,j′. We set the first 10 elements of θ

to c
√
σ2 log(p)

n (2,−3, 2, 2,−3, 3,−2, 3,−2, 3)T , where c is the selected signal-to-noise ratio, taken
from {1, 2, 3, 6}. The other elements of θ are set to zero.

p Anti-corr Gaussian NUTS Comp-wise slice EPC slice
10 0.41 26.18 3.61 3.04
50 0.93 108.33 31.44 4.16
500 5.60 22875.74 1121.47 16.14

Table 1: Running time for 1,000 iterations for the four algorithms. The time unit is in seconds based on pure R
implementation for each algorithm.

(p, ρ) Anti-corr Gaussian NUTS Comp-wise slice EPC slice
(10, 0.5) (202.36, 265,56) (8.82, 7.05) (49.08, 60.31) (5.19, 8.23)
(50, 0.5) (62.86, 165.74) (1.52, 2.46) (5.12, 4.61) (4.34, 5.98)
(500, 0.5) (4.81, 34.95) (0.01, 0.01) (0.10, 0.14) (2.36, 7.58)
(10, 0.9) (31.19, 35.79) (4.22, 3.89) No convergence (3.61, 4.48)
(50, 0.9) (11.28, 15.18) (0.53, 1.05) No convergence No convergence
(500, 0.9) (3.05, 14.50) (<0.01, <0.01) No convergence No convergence

Table 2: Effective sample size per computing time (ESS/s) for the four algorithms. In each cell, the first number is the
average ESS/s for the first 10 entries, and the second number is the average ESS/s for the rest entries.

Simulation: Soft-Thresholded
Gaussian Process[1]

We consider image smoothing, in the form of: ys = θs+ ϵs, ϵs
iid∼

N (0, σ2), where s is the pixel location, s = (i, j) with i = 1, . . . , n1
and j = 1, . . . , n2. We set the covariance function as K(s, s′) =
τ exp[−∥s− s′∥22/(2ξ

2)].

Figure 1: Data y. Figure 2: Ground
truth θ.

Figure 3: θ̂ pro-
duced by the
anti-correlation
Gaussian.

Figure 4: θ̂ pro-
duced by the
MH-within-Gibbs
sampler.

Data Application

In application, we use the functional magnetic resonance imaging
scan of one human subject who was performing a motor task. We
take a sectional view along the anterior-posterior axis of the brain,
corresponding to 91× 91 pixels per frame, and over a time period, we
collect 280 frames.
Using Anti-correlation Gaussian data augmentation, the effective
sample size per hour for four randomly selected locations of θ100 at
f = 100: 315.14 at s = 3300, 315.44 at s = 3320, 268.95 at s = 3720,
and 227.16 at s = 6700. Using NUTS, the effective sample size per
hour for estimating θ100 is 8.1 on average, 9.2 at s = 3300, 9.3 at
s = 3320, 7.4 at s = 3720, and 6.7 at s = 6700.

Iteration

Figure 5: Traceplot of θ1003320.
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Figure 6: ACF plot of θ100.
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