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What is Clustering?

Clustering partitions data into
groups where points in the same
group are more similar to each
other than to points in other
groups.

Applications include image
segmentation, anomaly
detection, and biological data
analysis.

Clustering is an unsupervised
learning task and can be done
using methods like k-means,
hierarchical clustering, etc.

(a) Clustering Example

(b) Image Segmentation
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Clustering Notations

Suppose we have data points y (n) = {y1, . . . , yn}.
Let [N] denote the index set {1, 2, . . . ,N} for any positive integer N.
The parameter of interest is a partition of [n], Vn = (V1, . . . ,VK ),
representing K clusters such that:

K⋃
k=1

Vk = [n], Vk ∩ Vk ′ = ∅ for k ̸= k ′.
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Graphical Model

A graphical model, particularly based on directed
acyclic graphs (DAGs), offers a flexible way to
specify the likelihood for clustering.

Generative Model Based on DAGs:
Each cluster can be represented by a DAG-based
likelihood.
The union of these DAGs, combined with a prior
distribution on the disjoint union of DAGs, results in a
generative model.
This model fits naturally into the Bayesian framework
for statistical inference.
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Forest-Based Graphical Model

A spanning forest (a union of spanning trees) offers a natural
framework for clustering: Nodes connected by edges within the same
tree are grouped into a cluster.

Recent advancements in efficient algorithms for sampling and
estimating trees have significantly enhanced the use of spanning
forest-based models for clustering (Luo et al., 2021; Zhao Tang Luo
and Mallick, 2024).
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BSF Model

For each cluster Vk , we associate a rooted spanning tree,
Gk = (Vk ,Ek , k

∗), where Ek represents the set of edges, and k∗ is the
root node within Vk .
We define EV = {E1, . . . ,EK} as the collection of edge sets and
RV = {1∗, . . . ,K ∗} as the collection of root nodes for all clusters.
Thus, (Vn, EVn ,RVn) forms a (rooted) spanning forest, which is the
disjoint union of K component rooted spanning trees, each
corresponding to a cluster.
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BSF Model

Consider the likelihood based on the spanning forest for data
y (n) = {y1, . . . , yn}:

P(y (n) | Vn, EVn ,RVn , θ) =
K∏

k=1

r(yk∗ ; θ)
∏

(i ,j)∈Gk

f (yi | yj ; θ)

 ,

where the model is associated with a generative process:

r(·; θ) is the probability kernel of the root distribution, responsible
for generating the first data point in each cluster.

f (· | yj ; θ) is the probability kernel of the leaf distribution, generating
subsequent data points in a cluster given an existing data point.
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Bayesian Spanning Forest (BSF) Model

Challenge: Considering all possible spanning forests in a graph with
n nodes leads to a vast parameter space, which can result in
computational inefficiency and poor estimation.

In response to this challenge, Duan and Roy (2024) propose a novel
Bayesian spanning forest (BSF) model based on the key idea that
the primary interest in clustering is the partition of nodes Vn, NOT
the directed edges within each DAG.

Their model treats the edges in each DAG as latent variables and
focuses on the integrated posterior, where the edges are
marginalized out.
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BSF Model

Let Π0(K ,Vn) be a partition probability function serving as the prior,
Π0(EVn ,RVn | Vn) as the conditional prior for edges and roots. We derive
the posterior distribution of Vn given the data y (n) as follows:

Π(Vn | y (n)) =
∑

EVn
,RVn

P(y (n)|Vn,EVn ,RVn )Π0(K ,Vn)Π0(EVn ,RVn |Vn)∑
V′
n,EV′

n
,RV′

n

P(y (n)|V ′
n,EV′

n
,RV′

n
)Π0(K ,V ′

n)Π0(EV′
n
,RV′

n
|V ′

n)
.
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Bayesian Spanning Forest Model: Empirical and
Theoretical Performance

The empirical performance of the Bayesian spanning forest model has
been extensively studied in Duan and Roy (2024).

Theoretically, the model’s good performance is attributed to:

Asymptotic equivalence between the posterior mode (given a number
of clusters) and the estimate from the normalized spectral clustering
algorithm (Ng et al., 2001).
Clustering consistency when data are generated from a forest
graphical model.

However, it remains unknown whether the integrated posterior of the
node partition is robustly consistent.

Specifically, if the data-generating mechanism differs from the
specified graphical model, can the posterior still concentrate on the
ground-truth partition for separable data points?
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Problem of Interest
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Clustering Consistency

Definition (Posterior Consistency for Clustering)

The posterior Π(Vn|y (n)) is said to be weakly consistent at
(V 0,n

1 , . . . ,V 0,n
K0

) if:

Π(Vn ̸= (V 0,n
1 , . . . ,V 0,n

K0
)|y (n)) n→∞→ 0

in P
(∞)
0 -probability. It is strongly consistent if this convergence occurs

almost surely.

Π(Vn|y (n)): The posterior distribution of the partition Vn given the
data.

(V 0,n
1 , . . . ,V 0,n

K0
): The oracle clustering (true partition).

P
(∞)
0 : The probability space of y (∞), representing the oracle

data-generating mechanism.
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Problem of Interest

Oracle Clustering: (V 0,n
1 , . . . ,V 0,n

K0
) is the true partition of the data.

Oracle Data-Generating Mechanism:

yi
indep∼ G 0

z∗i
, i = 1, . . . , n.

Posterior of the Partition Vn under the BSF Model:

Π(Vn = (V1, . . . ,VK ) | y (n)) = Cn · (δλ)K
K∏

k=1

∣∣∣∣LVk +
1

nk
J

∣∣∣∣
where LVk is the Laplacian matrix of cluster Vk , and nk is the size of cluster Vk .

We seek to determine the mild assumptions required to achieve strong clustering
consistency:

Π
(
Vn ̸= (V 0,n

1 , . . . ,V 0,n
K0

) | y (n)
)
→ 0 as n → ∞ P

(∞)
0 -almost surely
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Main Results
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Two Mild Assumptions

Assumption 1: The oracle partition (V 0,∞
1 , . . . ,V 0,∞

K0
) satisfies

|V 0,∞
k | > 0 for k ∈ [K0].

Assumption 2: There exist positive constants C1,C2 > 0 such that,
for sufficiently large n, C1δn ≤ mini∈[n] r(yi ) ≤ maxi∈[n] r(yi ) ≤ C2δn.
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Notations

We define f
(n)
st = f (yt | ys ; θn) as the conditional probability kernel

between two nodes ys and yt .

The magnitude of f
(n)
st quantifies the probabilistic closeness or

association between the nodes.

The larger f
(n)
st , the more likely two nodes arise from the same cluster.

A key step in our analysis is controlling these conditional kernels
efficiently using θn.
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Main Results

Let

D(n)
ϕ :=

{
y (n) :

maxs ̸∼t;s,t∈[n] f
(n)
st

δnλn
≤ c1(K0 − 1 + ι1)

−n,

δnλn

mins′∼t′;s′,t′∈[n] f
(n)
s′t′

≤ c2(K0 + 1 + ι2)
−n

}
.

Theorem (General Strong Clustering Consistency under BSF)

Π
(
Vn ̸= (V 0,n

1 , . . . ,V 0,n
K0

) | y (n)
)
→ 0 as n → ∞ P

(∞)
0 -almost surely,

if
∑∞

n=1 P
(∞)
0 (y (n) ̸∈ D(n)

ϕ ) < ∞ for a fixed constant ϕ.
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Gaussian-BSF

For simplicity, we denote dst := d(ys , yt).

Consider f
(n)
st = ζ(σ0,n) exp

{
− d2

st
2(σ0,n)2

}
.

Plugging this specific form of f
(n)
st for Gaussian-BSF into the

conditions of D(n)
ϕ and rearranging terms, we have:

D(n)
ϕ =

{
y (n) : min

s ̸∼t
d2
st ≥ an, max

s′∼t′
d2
s′t′ ≤ bn

}
,

where:{
an = 2(σ0,n)2

[
n log(K0 − 1 + ι1)− log(δnλn) + log(ζ(σ0,n))− log(c1)

]
,

bn = 2(σ0,n)2
[
−n log(K0 + 1 + ι2)− log(δnλn) + log(ζ(σ0,n)) + log(c2)

]
.

For Euclidean distance, log(ζ(σ0,n)) = −p log(
√
2πσ0,n). Said et al.

(2022) give expressions for ζ(σ0,n) for a wide range of homogenous
Riemannian manifolds.
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Interpretation of the Conditions on the Oracle

D(n)
ϕ =

{
y (n) : min

s ̸∼t
d2
st ≥ an, max

s′∼t′
d2
s′t′ ≤ bn

}
The minimum distance between any two points from different oracle
clusters must be bounded below by a sequence an, ensuring clear
separation between clusters.

The maximum distance between any two points within the same
oracle cluster must be bounded above by bn, ensuring that points
within a cluster remain closely grouped.

These conditions do not need to hold for y (n) at every n, but the
probability that they hold should approach one as n → ∞.
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Main Results on Gaussian-BSF

Theorem (Clustering consistency under Gaussian-BSF model)

For f
(n)
st = ζ(σn) exp

{
−d2

st/[2σ
2
n]
}
,

Π(Vn ̸= (V 0,n
1 , . . . ,V 0,n

K0
)|y (n)) → 0 as n → ∞ P

(∞)
0 − almost surely, if there

exists ϕ = (c1, c2, ι1, ι2) ∈ R4
+ such that

∞∑
n=1

n2 max
k ̸=ℓ;k,ℓ∈[K0]

P(D2
kℓ < an) < ∞,

∞∑
n=1

n2 max
k′∈[K0]

P(D2
k′k′ > bn) < ∞.
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Two Concrete Examples
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Concrete Example I

Theorem (Consistency when using Gaussian-BSF for clustering data
from Gaussian distributions)

Suppose (V 0,∞
1 , . . . ,V 0,∞

K0
) is the oracle clustering for y (∞) = {y1, y2, . . .}, and

f
(n)
st = (

√
2πσn)

−p exp
{
−∥ys − yt∥22/[2σ2

n]
}
. Suppose yi

indep∼ N(µk ,Σk) if yi ∈ V 0,∞
k .

Set Λmax := maxk∈[K0] λmax(Σk) and Dµ,min := mink,ℓ∈[K0],k ̸=ℓ ∥µk − µℓ∥2. Assume that

(i) Assumptions 1 and 2 hold;

(ii) δnλn ≍ (K0 + 1 + ι)−n for a fixed constant ι > 0;

(iii) log(σn) = o(n);

(iv) nσ2
n/D

2
µ,min = o(1);

(v) Λmax log(n)/nσ
2
n = o(1).

Then we have Π(Vn ̸= (V 0,1
1 , . . . ,V 0,n

K0
)|y (n)) → 0 as n → ∞ P

(∞)
0 − almost surely.
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Discussion of the Theorem

Corollary

Define the signal-to-noise ratio (SNR) as SNR := Dµ,min/
√
Λmax. If

SNR/
√

log(n) → ∞ as n → ∞, there exists σ2
n that leads to the

clustering consistency under the BSF model. Specially, one can take
nσ2

n = (D2
µ,min)

α(Λmax log(n))
1−α for any α ∈ (0, 1).
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Concrete Example II

We can generalize to the cases when the oracle is a non-Gaussian
mixture.

The robustness of BSF model further allows us to present this result
for a more general setting where the truth is assumed to be a mixture
of object-valued distributions, supported on a metric space (Ω, d).
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Concrete Example II

Theorem (Consistency when using Gaussian-BSF for clustering data
from general mixture oracle)

Suppose (V 0,∞
1 , . . . ,V 0,∞

K0
) is the oracle clustering for y (∞) = {y1, y2, . . .} and

f
(n)
st = ζ(σn) exp{−d2

g (ys , yt)/[2σ
2
n]}. Suppose yi

indep∼ G 0
k if yi ∈ V 0,∞

k with {G 0
k }k∈[K0]

standing for the family of probability measures on Ω. Assume that

(i) Let µk := argminz Ex∼G0
k
d2(z , x) be the unique Fréchet mean under the density

G 0
k and Dµ,min := mink,ℓ∈[K0],k ̸=ℓ d(µk , µℓ).

(ii) Assumptions 1 and 2 hold;

(iii) δnλn ≍ (K0 + 1 + ι)−n for a fixed constant ι > 0;

(iv) PG0
k
(d(X , µk) > R) ≤ exp (−CRν) for fixed constants C , ν > 0, any k ∈ [K0] and

R ≥ 0;

(v) (log(n))2/ν/nσ2
n = o(1) with log(ζ(σn)) = o(n);

(vi) nσ2
n/D

2
µ,min = o(1),

then we have Π(Vn ̸= (V 0,1
1 , . . . ,V 0,n

K0
)|y (n)) → 0 as n → ∞ P

(∞)
0 − almost surely.
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Discussion of the Theorem

In this case, the impact of the variances of the oracle distributions is
incorporated in (iv) as the control on the tail probabilities. Similar to the
discussion following Theorem 4, under some mild conditions, if the
minimum separation satisfies Dµ,min/(log(n))

1/ν → ∞, then there exists
σ2
n that leads to clustering consistency.
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Wrap-up and Discussions
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Key Contributions

Robust model specification: Our findings present a practical
approach to bypassing the need for an entirely correct specification of
the mixture component distribution.

Simultaneous recovery: We demonstrate that the posterior achieves
strong consistency, recovering both the number of clusters and the
true clustering labels simultaneously. In contrast, previous work on
mixture models often requires additional conditions, such as
restricting the family of distributions or assuming the number of
clusters is known.
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Discussion (Part 1)

For consistency theory, we focus on the case where oracle clustering is
asymptotically identifiable via n-dependent separation conditions, as similarly
posited in recent clustering consistency theory on infinite mixture (Ascolani
et al., 2022).

One interesting extension would be to explore cases where the oracle
clustering is only partially identifiable, allowing for Bayes misclustering error.
However, reaching the Bayes error would likely require stronger assumptions
than those used in this work.
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Discussion (Part 2)

We chose the spanning forest graph for graphical model-based clustering due
to its strong empirical performance and mathematical tractability.

Future work could explore a broader class of graphs, including those where
edge formation is influenced by external covariates. Expanding the theory to
these new model-based clustering methods would be an interesting direction.
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Thank You

Thank You!

Feel free to reach out for any further questions.
Email: zheng.yu@ufl.edu
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